AAER's

Asian College of Science and Commerce

Affiliated to SPPU and Approved by Govt of Maharashtra Accredited by NAAC with B+

Grade

Course Outcomes

The examination format consists of continuous assessment, which accountsfor30marks for internal evaluation and 70 marks for external evaluation.

Class: M.Sc. I Organic Chemistry (Semester-I)

Sr. No	Subject	Course Outcome
1	Organic Chemistry-II	MOT and will be able to extend this in predicting reaction mechanism and
		stereochemistry of electrocyclic reactions.
		The concepts in free radical reactions, mechanism and the stereo chemical
		outcomes
		he basic principle of spectroscopic methods and their applications in structure
		elucidation of organic compounds using given spectroscopic data or spectra.
		Demonstrate a comprehensive understanding of the fundamental principles of
		physical chemistry, including thermodynamics, kinetics, quantum mechanics, and
		spectroscopy
	Physical Chemistry-I	Apply mathematical concepts and problem-solving techniques to solve
		quantitative problems in physical chemistry, including calculations involving
		equilibrium constants, reaction rates, and molecular properties
		Analyze and interpret experimental data obtained from various physical
		chemistrylaboratory techniques, such as spectroscopy, chromatography, and
2		calorimetry Explain the underlying theories and mechanisms behind chemical
		phenomena, such as chemical equilibrium, phase transitions, and molecular
		interactions
		Critically evaluate scientific literature and research articles in physical chemistry,
		and effectively communicate findings through written reports and oral presentations
		Student should visualize/ imagine molecules in 3 dimensions.
	Inorganic Chemistry	To understand the concept of symmetry and able to pass various symmetry
		elements through the molecule.
		Understand the concept and point group and apply it to molecules.
3		To apply the concept of point group for determining optical activity and dipole
		moment
		Students will be able to explore new areas of research in both chemistry and allied
		fields of science and technology.
4	General Chemistry	Students will be able to function as a member of an interdisciplinary problem
		solving team.
		To impart the students thorough idea in the chemistry of carbohydrates,
		aminoacidsproteins and nucleic acids etc.

AAER's

Asian College of Science and Commerce

Affiliated to SPPU and Approved by Govt of Maharashtra Accredited by NAAC with B+

Grade

CourseOutcomes

The examination format consists of continuous assessment, which accountsfor30marks for internal evaluation and 70 marks for external evaluation.

Class:M.Sc. I Organic Chemistry (Semester-III)

Sr. No	Subject	Course Outcome
	Organic Chemistry-II	MOT and will be able to extend this in predicting reaction mechanism and
		stereochemistry of electrocyclic reactions.
1		The concepts in free radical reactions, mechanism and the stereo chemical
1		outcomes
		The basic principle of spectroscopic methods and their applications in structure
		elucidation of organic compounds using given spectroscopic data or spectra.
		Upon completing the course in Molecular Spectroscopy and Nuclear Chemistry,
		students will understand the principles and techniques underlying various
		spectroscopic methods, including infrared, ultraviolet-visible, nuclear magnetic
		resonance, and mass spectrometry
	Physical Chemistry-II	They will be proficient in interpreting spectral data to correlate molecular
		structure, electronic configurations, and molecular dynamics with spectral features,
2		facilitating compound identification and structural elucidation
2		Through theoretical knowledge and practical exercises, students will apply
		spectroscopic methods in chemistry, biochemistry, environmental science, and
		materials science, contributing to analytical chemistry, molecular biology, and
		pharmaceutical research.
		They will explore radiation interactions with matter and radiation detection
		principles, understanding alpha, beta, and gamma radiation interactions and the
		design and operation of radiation detection instruments
		Student should able to find out the no of microstates and meaningful term
		symbols, construction of microstate table for various configuration
	Inorganic Chemistry	Student able to find out splitting of the free ion terms in weak ligand field and
3		strong ligand field
		Interpretation of electronic spectra for spin allowed oh and td complexes using
		Orgel diagram.
		Hund's rules for arranging the terms according to energy
		Students will be able to explore new areas of research in both chemistry and allied
		fields of science and technology
	General Chemistry	Students will be able to function as a member of an interdisciplinary problem
4		solving team.
		To impart the students thorough idea in the chemistry of carbohydrates, amino
		acids, proteins and nucleic acids etc.